Human Generated Data

Title

Rebecca Giving Eliezer Water to Drink at the Well

Date

1584

People

Artist: Adriaen Collaert, Flemish c. 1560 - 1618

Artist after: Maerten de Vos, Netherlandish 1532 - 1603

Publisher: Gerard de Jode, Flemish 1509 - 1591

Classification

Prints

Human Generated Data

Title

Rebecca Giving Eliezer Water to Drink at the Well

People

Artist: Adriaen Collaert, Flemish c. 1560 - 1618

Artist after: Maerten de Vos, Netherlandish 1532 - 1603

Publisher: Gerard de Jode, Flemish 1509 - 1591

Date

1584

Classification

Prints

Machine Generated Data

Tags

Amazon

Human 97.5
Person 97.5
Art 91.4
Person 88.7
Person 87.8
Painting 85.3
Person 71.1
Person 68.7
Drawing 66.7
Text 63.2
Person 57.6
Person 48
Person 44.1

Clarifai

art 99.4
illustration 99.3
painting 98.8
people 98.6
religion 96.1
man 95.2
manuscript 94.9
woman 94.8
print 94.1
sword 93
old 92.6
veil 92.2
god 91.8
adult 91.4
cape 90.6
group 90.2
Gothic 88.2
vintage 86.9
ancient 85.5
saint 85.1

Imagga

comic book 45.5
money 37.5
currency 35
cash 33.9
vintage 27.3
finance 26.2
stamp 26.1
bank 26
paper 25.9
dollar 25.1
mail 24.9
postmark 24.7
postage 24.6
old 24.4
letter 23.9
envelope 23.5
bill 22.8
postal 22.6
graffito 22.4
banking 22.1
retro 21.3
dollars 21.3
exchange 21
financial 20.5
business 19.4
art 18.7
savings 18.7
print media 18.2
wealth 18
decoration 17.7
note 17.5
close 16
philately 15.8
ancient 15.6
bills 15.6
one 14.9
symbol 14.8
circa 14.8
printed 14.8
banknote 14.6
hundred 14.5
us 14.5
pay 14.4
post 14.3
tray 14.1
notes 13.4
church 13
card 12.8
aged 12.7
states 12.6
book jacket 12.1
economy 12.1
office 12.1
investment 11.9
global 11.9
stamps 11.8
shows 11.8
banknotes 11.8
receptacle 11.4
container 11.3
antique 11.3
product 11.2
rich 11.2
culture 11.1
painter 10.9
religion 10.8
book 10.7
museum 10.7
payment 10.6
loan 10.5
profit 10.5
united 10.5
black 10.2
closeup 10.1
collection 9.9
masterpiece 9.9
history 9.8
funds 9.8
creation 9.8
market 9.8
communications 9.6
painted 9.5
binding 9.5
icon 9.5
mosaic 9.5
jacket 9.4
message 9.1
renaissance 8.8
salary 8.8
address 8.8
paintings 8.8
design 8.7
finances 8.7
change 8.7
fine 8.6
save 8.5
grunge 8.5
newspaper 8.1
man 8.1
post mail 7.9
zigzag 7.9
post office 7.9
fame 7.9
known 7.9
wages 7.8
delivery 7.8
cutting 7.7
debt 7.7
structure 7.7
sales 7.7
unique 7.6
hobby 7.6
pattern 7.5
sign 7.5
wrapping 7.2

Google

Microsoft

text 99.1
painting 99
drawing 91.6
cartoon 90.8
person 85.7
book 84.3
poster 69.6
clothing 62.9
picture frame 18.1

Face analysis

Amazon

AWS Rekognition

Age 26-43
Gender Female, 54.2%
Disgusted 48.3%
Confused 45.4%
Calm 47.4%
Angry 46.3%
Happy 45.2%
Sad 46.9%
Surprised 45.4%

AWS Rekognition

Age 26-43
Gender Female, 53.9%
Happy 45.2%
Calm 50.6%
Disgusted 45.5%
Confused 45.2%
Sad 47.4%
Angry 46%
Surprised 45.2%

AWS Rekognition

Age 45-63
Gender Female, 50.3%
Angry 45.1%
Calm 54.3%
Disgusted 45%
Sad 45.4%
Surprised 45.1%
Confused 45.1%
Happy 45.1%

AWS Rekognition

Age 45-66
Gender Male, 52.7%
Calm 46.4%
Sad 53.2%
Angry 45.2%
Happy 45%
Disgusted 45%
Confused 45.1%
Surprised 45%

AWS Rekognition

Age 35-52
Gender Female, 52.9%
Sad 45.7%
Disgusted 45%
Happy 45%
Confused 45.1%
Calm 53.9%
Surprised 45.1%
Angry 45.1%

AWS Rekognition

Age 14-23
Gender Male, 50.4%
Surprised 49.5%
Sad 49.5%
Angry 49.7%
Calm 50.1%
Happy 49.5%
Confused 49.5%
Disgusted 49.6%

AWS Rekognition

Age 23-38
Gender Male, 54.4%
Surprised 45.9%
Sad 46.7%
Calm 49.7%
Confused 45.7%
Angry 46.6%
Disgusted 45.3%
Happy 45.2%

AWS Rekognition

Age 20-38
Gender Female, 53.1%
Disgusted 45.7%
Happy 45.3%
Surprised 45.3%
Calm 49.7%
Sad 48%
Angry 45.8%
Confused 45.2%

AWS Rekognition

Age 26-43
Gender Female, 52%
Confused 45.6%
Disgusted 45.4%
Calm 45.9%
Sad 50.5%
Surprised 46.8%
Angry 45.4%
Happy 45.4%

AWS Rekognition

Age 9-14
Gender Female, 50.5%
Surprised 49.5%
Sad 49.8%
Happy 49.9%
Disgusted 49.6%
Confused 49.5%
Calm 49.6%
Angry 49.5%

AWS Rekognition

Age 16-27
Gender Male, 52.3%
Calm 46%
Happy 45.1%
Disgusted 45.4%
Confused 45.8%
Angry 45.4%
Surprised 45.3%
Sad 52%

AWS Rekognition

Age 14-23
Gender Male, 50.6%
Happy 45.7%
Calm 47.6%
Angry 46.3%
Disgusted 45.5%
Sad 48.6%
Surprised 45.8%
Confused 45.5%

AWS Rekognition

Age 26-43
Gender Female, 50.4%
Confused 45%
Happy 45.1%
Sad 45.2%
Disgusted 45%
Calm 54.7%
Surprised 45%
Angry 45%

Feature analysis

Amazon

Person 97.5%
Painting 85.3%

Captions

Microsoft

a close up of text on a white board 26.3%
a close up of text on a white surface 26.2%
a close up of text on a black surface 26.1%

Text analysis

Amazon

dat
Abraha,
Potum
Dominum
hanc
Vnde
preparafse
Rebecea
hero
camelis
Potum dat Rebecea Ferno Abraha, eiyfque camelis Vnde cognofeitis preparafse hanc Dominum hero fuo coniugem
eiyfque
bmam
coniugem
cognofeitis
ruihi
A my.
Nsaac
Sameraux
Grnef
famy
Gsien
d'AbnrSam
comnsis
ye
Ferno
L'onnou
Nsaac A my. &ATittr 4t+.50. bmam
fuo
GAA
4t+.50.
au
par
Nbetcr
Nbetcr dmv ye au ruihi d'AbnrSam GAA AY Sameraux qj comnsis l Gsien L'onnou hulr rL'immes
qj
rL'immes
Jfon
famy par arun avegs.y amms Jfon
avegs.y
dmv
hulr
amms
arun
AY
&ATittr
l

Google

$6
Potum
dat
hero
fuo
4
Y
h
mm
23 $6 Potum dat Rebeca fruo Abraha, eiyque camelis: Vnde cognofeitis preparake hane Dominum hero fuo coniugem. Grnf. 4 bourmme ruhur dAbaSam &a hs c amiause CJTinoLs bar nnon Y r auit h ASaac fon ma. もdson par.hta mm
eiyque
preparake
hane
ruhur
Abraha,
cognofeitis
Dominum
Grnf.
dAbaSam
c
amiause
nnon
auit
ASaac
Rebeca
fruo
camelis:
Vnde
bourmme
hs
CJTinoLs
r
dson
23
coniugem.
&a
bar
fon
ma.
par.hta