Machine Generated Data
Tags
Amazon
created on 2019-03-22
Clarifai
created on 2019-03-22
Imagga
created on 2019-03-22
sketch | 49.2 | |
| ||
drawing | 36.3 | |
| ||
representation | 33.7 | |
| ||
container | 28.1 | |
| ||
money | 25.5 | |
| ||
bag | 24.6 | |
| ||
currency | 24.2 | |
| ||
cash | 21 | |
| ||
bank | 19.7 | |
| ||
banking | 18.4 | |
| ||
business | 16.4 | |
| ||
finance | 16 | |
| ||
financial | 16 | |
| ||
paper | 15.9 | |
| ||
bill | 14.3 | |
| ||
note | 13.8 | |
| ||
banknote | 13.6 | |
| ||
dollar | 13 | |
| ||
portrait | 12.9 | |
| ||
backpack | 12.8 | |
| ||
wealth | 12.6 | |
| ||
black | 12.1 | |
| ||
cute | 11.5 | |
| ||
hamper | 11.4 | |
| ||
face | 11.4 | |
| ||
savings | 11.2 | |
| ||
dollars | 10.6 | |
| ||
exchange | 10.5 | |
| ||
hair | 10.3 | |
| ||
closeup | 10.1 | |
| ||
art | 9.9 | |
| ||
basket | 9.8 | |
| ||
close | 9.7 | |
| ||
notes | 9.6 | |
| ||
people | 9.5 | |
| ||
covering | 9.4 | |
| ||
economy | 9.3 | |
| ||
one | 9 | |
| ||
market | 8.9 | |
| ||
banknotes | 8.8 | |
| ||
hundred | 8.7 | |
| ||
design | 8.5 | |
| ||
investment | 8.2 | |
| ||
protective covering | 8.1 | |
| ||
light | 8 | |
| ||
space | 7.7 | |
| ||
person | 7.7 | |
| ||
eyes | 7.7 | |
| ||
debt | 7.7 | |
| ||
finances | 7.7 | |
| ||
old | 7.7 | |
| ||
energy | 7.6 | |
| ||
power | 7.5 | |
| ||
pattern | 7.5 | |
| ||
human | 7.5 | |
| ||
rich | 7.4 | |
| ||
style | 7.4 | |
| ||
shape | 7.4 | |
| ||
gray | 7.2 | |
| ||
eye | 7.1 | |
|
Google
created on 2019-03-22
Drawing | 90.4 | |
| ||
Illustration | 87.5 | |
| ||
Text | 86.9 | |
| ||
Sketch | 84.9 | |
| ||
Art | 77.7 | |
| ||
Painting | 76.1 | |
| ||
Artwork | 64.1 | |
| ||
Visual arts | 59.3 | |
| ||
Vintage clothing | 55.9 | |
|
Microsoft
created on 2019-03-22
text | 100 | |
| ||
book | 100 | |
| ||
drawing | 100 | |
| ||
illustration | 57.7 | |
| ||
art | 31.4 | |
| ||
engraving | 27.9 | |
| ||
black and white | 26.9 | |
| ||
sketch | 24.7 | |
| ||
monochrome | 24.7 | |
|
Face analysis
Amazon

AWS Rekognition
Age | 26-43 |
Gender | Female, 52.5% |
Disgusted | 45.1% |
Angry | 45.4% |
Surprised | 45.3% |
Happy | 45.2% |
Calm | 46.1% |
Confused | 45.1% |
Sad | 52.7% |

AWS Rekognition
Age | 48-68 |
Gender | Male, 51.7% |
Happy | 45.1% |
Sad | 45.3% |
Calm | 45.8% |
Disgusted | 45.5% |
Surprised | 45.5% |
Confused | 45.5% |
Angry | 52.3% |
Feature analysis
Amazon


Person | 98.2% | |
|
Captions
Microsoft
a close up of a book | 55.2% | |
| ||
close up of a book | 49.7% | |
| ||
a hand holding a book | 49.6% | |
|
Text analysis
Amazon

BONS

LES

LES BONS BOURGEOIS.

BOURGEOIS.

phs

depres

dessous

celte

aupres

de

ah!

glace

bobonne!

si

glace aupres de de toi bobonne!

ne

nuit

zero..

je

dessous de zero.. ah! je ne M etonne phs si celte nuit j etais

j etais

de toi

etonne

all

- Six depres all

N 65.

'Aubertacie

Chet

- Six

Imy 'Aubertacie

Chet Amlerl ie hennt.

Amlerl

ie hennt.

Imy

M

BOURGEOIS

o

Aabert&C

ah

aupres

je

mčtone

glacd

LES

BONS

65

P.de

Sixdegris

de

si

celte

nuit

bobonne

LES BONS BOURGEOIS
o 65
030
mp Aabert&C
her Anbert P.de la B
Sixdegris au dessous de zer.. ah je ne mčtone plus si celte nuit j elais
glacd aupres de toi, bobonne

030

Anbert

la

B

dessous

zer..

ne

elais

toi,

mp

her

au

plus

j